

### Turning Numbers into Action: A Hands-On Analytics Workshop for Public Health Practice

RANDI FORAKER, PHD

CAROL KOOB & MARY CHRISTIE

#### Objectives

- ► Introduce the unified dataset for Missouri mortality and socioeconomic outcomes
- ▶ Walk through a 10-step analysis to explore countylevel data
- Generate summary statistics and maps for decisionmaking / reporting

Data Sources US\_CENSUS\_ACS\_5\_YR\_SUMMARY (2017–2021)

County Health Rankings & Roadmaps — Missouri (2025)

HDPulse NIMHD — Missouri Mortality Table (2019–2023)

Data
Preparation
(Cleaning &
Joining)

Standardized column names and types (fixed percents/ratios, trimmed NAs)

Converted provider ratios to 'population per 1 provider' (numeric)

Harmonized county names/IDs to join across sources

Saved a single, analysis-ready file: MissouriCompiledData.csv

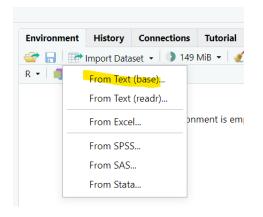
- ▶ Load tidyverse:
  - ▶ Read in ACS Dataset → Split county variable
    - ```{r} ACS\_Data\_modified <- ACS\_Data %>% separate(COUNTY, into = c("COUNTY", "STATE"), sep = ",") ```
  - ▶ Read in Mortality dataset → Select only county and death variable and rename
    - ```{r}Missouri\_Death\_modified <- Missouri\_Death %>% select(County, Age.Adjusted.Death.Rate.....deaths.per.100.000) %>% rename(COUNTY = County, ALL\_MORTALITY\_AGE\_ADJUSTED = Age.Adjusted.Death.Rate......deaths.per.100.000)```
  - Repeat with Disease-specific datasets
  - ▶ Read in County Health Rankings dataset → (Added "County" to all county names before import)

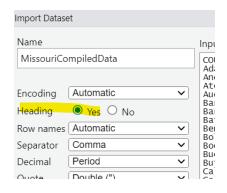
- Joined each dataset using "Left Join"
  - ```\{r\}mo\_death <- ACS\_Data\_modified %>% left\_join(Missouri\_Death\_modified, by = "COUNTY")```
  - ```{r}mo\_cancer <- mo\_death %>% left\_join(Missouri\_Cancer\_modified, by = "COUNTY")```
  - ```{r}mo\_withdeaths <- mo\_cancer %>%
    left\_join(Missouri\_HeartDisease\_modified, by = "COUNTY") %>%
    left\_join(Missouri\_KidneyDisease\_modified, by = "COUNTY") %>%
    left\_join(Missouri\_Diabetes\_modified, by = "COUNTY")```
  - Repeat

- Removed some variables for clarity
  - ```{r}MO\_otherdata <- `2025\_MO\_CNT\_RAT` %>% select(-c(FIPS, State))
  - mo\_withdeaths\_edited <- mo\_withdeaths %>% select(-c(GEOID, STATE))```
- Convert ratios to numeric
  - ```{r}testdata <- MissouriCompiledData %>% separate(RATIO\_PRIMARY\_CARE\_PHYSICIANS, into = c("RATIO\_PRIMARY\_CARE\_PHYSICIANS", "REMOVE1", "REMOVE2"), sep = ":") %>%
  - select(-c(REMOVE1, REMOVE2))testdata\$RATIO\_PRIMARY\_CARE\_PHYSICIANS <as.numeric(testdata\$RATIO\_PRIMARY\_CARE\_PHYSICIANS)```

- Renamed variables so naming scheme matches existing dataset
  - ```{r}MO\_otherdata\_renames <- MO\_otherdata %>%
  - rename(COUNTY = County,
  - PCT\_LOW\_BIRTH\_WEIGHT = X..Low.Birth.Weight,
  - ► PCT\_FAIR\_OR\_POOR\_HEALTH = X..Fair.or.Poor.Health,
  - PCT\_VACCINATED = X..Vaccinated,
  - ▶ RATIO\_PRIMARY\_CARE\_PHYSICIANS = Primary.Care.Physicians.Ratio,
  - ▶ RATIO\_MENTAL\_HEALTH\_PROVIDERS = Mental.Health.Provider.Ratio,
  - ► RATIO\_DENTISTS = Dentist.Ratio,
  - ► PCT\_WITH\_ANNUAL\_MAMMOGRAM = X..with.Annual.Mammogram,
  - ► PCT\_SEVERE\_HOUSING\_PROBLEMS = X..Severe.Housing.Problems,
  - ▶ PCT HOUSEHOLDS WITH BROADBAND ACCESS = X..Households.with.Broadband.Access,
  - ▶ PCT\_SOME\_COLLEGE = X..Some.College,
  - PCT\_UNEMPLOYED = X..Unemployed)``

Data Dictionary Defines every variable, unit, and meaning


Clarifies mortality units: ageadjusted deaths per 100,000


Specifies provider metrics: population per 1 provider

Ensures consistent interpretation across the cohort

#### Step 1: Load the Dataset

- ▶ Read in the data set by clicking the Import Dataset button in the Environment tab to the right.
  - ▶ Select first option "From Text (base).
  - ▶ Select the MissouriCompiledData.csv file to upload.
  - ▶ On next screen, click "Yes" by Heading and then "Import."







#### Step 2: Install & Load Packages

- Automatically install missing packages
- ▶ Load tidyverse, janitor, tigris, sf, gt, plotly, etc.
  - ► Either click CTRL+enter, line-by-line or highlight the set of code to run together

```
install_and_load <- function(packages) {
   for (pkg in packages) {
     if (!requireNamespace(pkg, quietly = TRUE)) {
       install.packages(pkg, dependencies = TRUE)
     }
    library(pkg, character.only = TRUE)
   }
}
install_and_load(c("tidyverse", "plotly", "sf", "tigris"))</pre>
```

#### Step 3: View MO County Names

- Review the names of all the counties in Missouri to determine how they are listed
- Code: unique (Missouri Compiled Data \$COUNTY)

```
"Atchison County"
[1] "Adair County"
                             "Andrew County"
                             "Barry County"
                                                      "Barton County"
[4] "Audrain County"
[7] "Bates County"
                             "Benton County"
                                                      "Bollinger County"
                                                      "Butler County"
[10] "Boone County"
                             "Buchanan County"
[13] "Caldwell County"
                             "Callaway County"
                                                      "Camden County"
[16] "Cape Girardeau County"
                             "Carroll County"
                                                      "Carter County"
[19] "Cass County"
                              "Cedar County"
                                                      "Chariton County"
[22] "Christian County"
                             "Clark County"
                                                      "Clay County"
[25] "Clinton County"
                             "Cole County"
                                                      "Cooper County"
[28] "Crawford County"
                                                      "Dallas County"
                             "Dade County"
[31] "Daviess County"
                             "DeKalb County"
                                                      "Dent County"
```

#### Step 4: Select County

- ## Step 4: Pick either your county or a county you are interested in learning about by pasting the county name in the code
- Code: YOUR\_COUNTY <- c("Phelps County")</p>
  - ▶ (Don't forget the quotes! County must match format in dataset.)

#### Step 5: Create a County Table

- Creates a table for your chosen county with all included variables
  - ▶ No editing to provided code needed

|                               | Value         |
|-------------------------------|---------------|
| COUNTY                        | Phelps County |
| PCT_BELOW_POVERTY_LINE        | 18.81         |
| PCT_NO_HEALTH_INSURANCE       | 8.59          |
| MEDIAN_HOUSEHOLD_INCOME       | 48124         |
| PCT_LESS_THAN_HIGH_SCHOOL     | 9.4           |
| PCT_NO_VEHICLE_HOUSEHOLD      | 12.08         |
| PCT_LIMITED_ENGLISH_HOUSEHOLD | 1.53          |
| PCT_HOME_OWNERSHIP            | 60.88         |
| ALL_MORTALITY                 | 1007          |
| CANCER_MORTALITY              | 159.6         |
| HFART DISFASE MORTALITY       | 188 9         |

#### Step 6: Review possible variables

- Now we are going to pick a variable of interest and look at how this variable ranks across counties.
- Review the variable names to know your options by running the names command.

```
[1] "COUNTY"
```

- [3] "PCT\_NO\_HEALTH\_INSURANCE"
- [5] "PCT\_LESS\_THAN\_HIGH\_SCHOOL"
- [7] "PCT\_LIMITED\_ENGLISH\_HOUSEHOLD"
- [9] "ALL\_MORTALITY"
- 11] "HEART\_DISEASE\_MORTALITY"

TEART\_DISEASE\_NORTALE

```
"PCT_BELOW_POVERTY_LINE"
```

<sup>&</sup>quot;MEDIAN\_HOUSEHOLD\_INCOME"

<sup>&</sup>quot;PCT\_NO\_VEHICLE\_HOUSEHOLD"

<sup>&</sup>quot;PCT\_HOME\_OWNERSHIP"

<sup>&</sup>quot;CANCER\_MORTALITY"

<sup>&</sup>quot;KIDNEY\_DISEASE\_MORTALITY"

#### Step 7: Enter the variable of interest

- ► Enter your variable of interest here.
- ▶ (Tip: You can copy and paste from your variable list above.)

#### Step 8:

- Create a table with your variable ranked by county from largest to smallest.
- (No editing to code needed)

|    | COUNTY             | Total       |
|----|--------------------|-------------|
|    | <chr></chr>        | <db1></db1> |
| 1  | Pemiscot County    | 27.5        |
| 2  | Oregon County      | 25.4        |
| 3  | Wayne County       | 23.6        |
| 4  | Howell County      | 23.5        |
| 5  | Shannon County     | 23.4        |
| 6  | Mississippi County | 23.4        |
| 7  | Adair County       | 22.9        |
| 8  | Barton County      | 22.1        |
| 9  | Dunklin County     | 22.1        |
| 10 | Carter County      | 22.0        |
| 11 | Ozark County       | 21.9        |
| 12 | Iron County        | 21.7        |
| 13 | Douglas County     | 21.3        |
| 14 | Ripley County      | 21.3        |
| 15 | Butler County      | 21.3        |
| 16 | Dallas County      | 21.1        |
| 17 | Nodaway County     | 20.7        |
| 18 | Morgan County      | 20.0        |
| 19 | Wright County      | 19.7        |
| 20 | St. Louis city     | 19.6        |

#### Step 9: Prep for Mapping

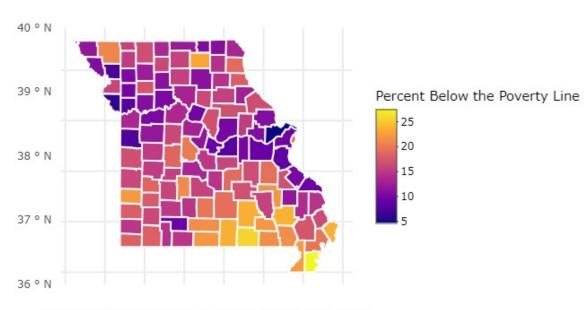
- ▶ Now we can visualize this on a map.
- ► Generate map data and join it into the data of your selected variable of interest above.
- ► (No editing to code needed)

#### Step 10: Mapping your County Variable

- Create your map!
- ▶ You can change the title and legend title of the graph by changing what is in the quotes on the first two lines.
- Code:

```
MAP_TITLE <- c("Percent Below the Poverty Line by County")

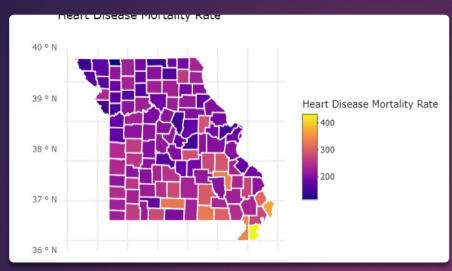
LEGEND_TITLE <- c("Percent Below the Poverty Line")


interactivemap <- ggplot(mo_map) + geom_sf(aes(fill = .data[[YOUR_VARIABLE]],

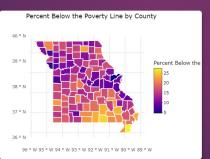
text = paste0("County: ", NAME,

"<br/>"<br/>"<br/>"<br/>color = "white") + scale_fill_viridis_c(option = "plasma", na.value = "grey90") + theme_minimal() + labs(fill = LEGEND_TITLE, title = MAP_TITLE)ggplotly(interactivemap, tooltip = "text")
```

#### PRETTY!


#### Percent Below the Poverty Line by County

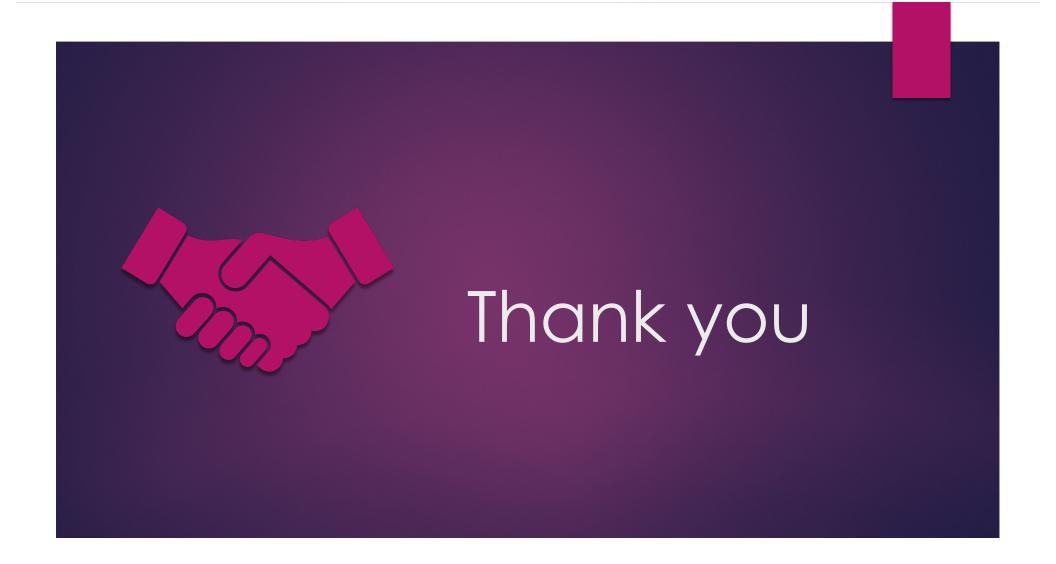



96 ° W 95 ° W 94 ° W 93 ° W 92 ° W 91 ° W 90 ° W 89 ° W

#### REPEAT!!!

- Interested in additional counties or variables?
- ► Go back to Step 4 to change YOUR\_COUNTY and/or Step 7 YOUR\_VARIABLE and rerun the code to look at different aspects of the data that interest you!
- ► (Reminder to update the title and legend for your graph to match your new variable.)




# Number People to 1 Physician 40 ° N 39 ° N 38 ° N 96 ° W 95 ° W 94 ° W 93 ° W 92 ° W 91 ° W 90 ° W 89 ° W



## Multiple Maps

#### Limitations

- ▶ Datasets from different timeframes
- Some variables did not have county data (e.g., PPL\_TO\_PRIMARY\_CARE\_PHYSICIAN)

